Long Beach Boulevard Road Safety Audit
 Ocean County

FINAL REPORT

December 2013

Submitted by
Andy Kaplan
Senior Transportation Safety Engineer
Sally Karasov
Transportation Safety Engineer
Michael Weber
Engineering Researcher

Center for Advanced Infrastructure \& Transportation (CAIT)
Rutgers, The State University of New Jersey

In cooperation with
New Jersey Department of Transportation
Bureau of Transportation Data and Safety
and
U.S. Department of Transportation
Federal Highway Administration

Road Safety Audit reports provided by Center for Advanced Infrastructure and Transportation staff do not constitute an engineering report. The agency responsible for design and construction should consult a professional engineer licensed in the state of New Jersey in preparing construction documents to implement any of the safety countermeasures in the report.

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation or the Rutgers' Center for Advanced Infrastructure and Transportation. This report does not constitute a standard, specification, or regulation. Such document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. government assumes no liability for the contents or use thereof.

Report No.	Government Accession No.	Recipient's Catalog No.	
Title and Subtitle Long Beach Boulevard (CR 607) Road Safety Audit		Report Date December 2013	
		- Performing Organization Code CAIT/Rutgers	
Author(s) Andy Kaplan, Sally Karasov, Michael Weber		Performing Organization Report No.	
Performing Organization Name and Address Center for Advanced Infrastructure \& Transportation (CAIT) Rutgers, The State University of New Jersey 100 Brett Road Piscataway, NJ 08854-8014		Work Unit No.	
		Contract or Grant No.	
Sponsoring Agency Name and Address N.J. Department of Transportation 1035 Parkway Avenue P.O. Box 600 Trenton, NJ08625-0600	U.S. Department of Transportation Research and Special Programs Administration 400 7th Street, SW Washington, DC 20590-0001	Type of Report and Period Covered Final Report - December 2013	
		Sponsoring Agency Code	
Supplementary Notes			
Abstract This report documents findings and recommendations made by the RSA team on August 28, 2012, on the southern half of Long Beach Boulevard on Long Beach Island in Ocean County, New Jersey.			
Key Words RSA, Road Safety Audit	Distribution Sta No Restri		
Security Classification (of this report) Unclassified	Security Classification (of this page) Unclassified	No. of Pages 91	Price

Form DOT F 1700.7

CAIT's Transportation Safety Resource Center (TSRC) and New Jersey Local Technical Assistance Program (NJ LTAP) offer a statewide Road Safety Audit (RSA) service at no charge to New Jersey towns and counties. Interested parties can request road surveys conducted by a team of engineers, planners, and law-enforcement officers to help municipalities and counties make cost-effective safety improvements.

A multidisciplinary team of professionals offers assessments on roadway issues such as pedestrian and bicycle safety, intersection analyses, rural roads, human factors, speed management, and sign visibility and retroreflectivity standards.

RSAs include data-driven considerations and analysis of crashes. To determine the best safety solutions, RSA professionals perform incisive crash data evaluations on the target area using Plan4Safety, TSRC's award-winning crash database and software.

The RSA team provides a final report that includes long- and short-term countermeasure recommendations that fit within the requestor's budget. Furthermore, RSAs pay off. According to the Federal Highway Administration (FHWA), countermeasures applied after RSAs can reduce crashes by about 60 percent.

For more information, contact Senior Transportation Safety Engineer Andy Kaplan at andy.kaplan@rutgers.edu.

Table of Contents

Introduction 1
Background 2
Road Safety Audit Process 8
Information Sources 9
RSA Team 10
Crash Data 11
RSA Team Findings 15
Implementing Recommendations 28
Potential Funding Sources 33
Appendix A A-1
Raw Crash Data A-2
Appendix B B-1
Panel Legend for Aerial Image of Crash Locations B-2
Aerial Image of Crash Locations along the Corridor B-3
Appendix C C-1
Straight Line Diagram C-2
Appendix D D-1
Alternative Crosswalks D-2
Crash Diagram - 48th Street D-5
Typical Roadway Sections D-6
Appendix E E-1
List of Recommendations E-2
Appendix F F-1
Bus Route F-2

The Rutgers' Transportation Safety Resource Center (TSRC) at the Rutgers' Center for Advanced Infrastructure and Transportation (CAIT) and the North Jersey Transportation Planning Authority (NJTPA) have partnered to provide NJTPA's sub-regions with facilitated Road Safety Audits at locations identified by the sub-regions as having safety concerns. To assist the sub-regions in making this determination, NJTPA and TSRC have prepared a ranking of

Figure 1 - Map of study area roadway segments based on crash data.

In 2012, Ocean County was selected by NJTPA as a sub-region to obtain an RSA. Ocean County identified Long Beach Boulevard, south of New Jersey Route 72 on Long Beach Island, as a corridor of longstanding safety concern. This section of roadway is the main, and at times only, north-south roadway along the barrier island, serving as the sole arterial roadway to the single access point to the island-the Route 72 Causeway Bridge. In addition to the traffic demands, this roadway is traversed by
pedestrians accessing the beach from homes and business on the western side of the roadway. The safety of pedestrians in this area has been deemed a primary concern for the municipalities, as the economic vitality of these shore communities is enhanced by the mobility of pedestrians.

As such, Ocean County directed the Road Safety Audit to consider the critical safety needs of this roadway.

Background

The audit focused on Long Beach Boulevard (CR 607) from Route 72, the bridge at 9th Street, to the southern tip of Long Beach Island, as shown in Figure 1. This roadway is an important north-south arterial in a narrow north-south oriented island. The Road Safety Audit includes approximately nine miles of roadway and crosses multiple municipalities, from north to south: Ship Bottom Borough, Long Beach Township, Beach Haven Borough, and again, Long Beach Township. Long Beach Boulevard is an "Urban Minor Arterial" with three different roadway sections. The majority of the RSA corridor includes two lanes in each direction with a two-way-left-turn lane. Towards the southern end of the island is a half-mile section with one lane in each direction, a left-turn lane, and angled parking on both sides of the road. The southern two plus miles is a two-lane roadway with shoulders. (See Appendix D for diagram of the roadway sections.)

All of Long Beach Boulevard is under Ocean County jurisdiction with many of the traffic lights under municipal jurisdiction. There are more than 200 intersections on Long Beach Boulevard in the RSA area, and 33 are signalized. Of the unsignalized intersections, 12 have marked crosswalks. From mid-May to mid-October, the speed limit in the study area varies between 30 to 35 miles per hour (mph). The speed limit from mid-October to mid-May is 40 to 45 mph , and the signals are deactivated. Variable message

Figure 2 - Typical view along Long Beach Boulevard
signs instruct the public with the change in speed limits. The land use throughout the corridor is predominantly focused on tourism, primarily during the warmer weather, and includes commercial and residential properties, as observed in Figure 2 above. There is one bus route that operates only one day a week.

Primarily during the tourist season, and especially during the weekends, there is heavy vehicular volume as well as significant pedestrian activity. There is confusion to both drivers and pedestrians due to the lack of uniformity of traffic signals (see Figures 3a and 3b), signage, and crosswalks. In addition, pedestrians take a lot of liberties with their roadway crossings.

Figure 3a - Horizontal signal on span wire

Figure 3b - Vertical signal on span wire

Because of the high number of intersections, the attention of the RSA was focused on characteristics of the intersections and roadway segments rather than on specific locations. Specifically, the different roadway cross sections and the variation in intersection appearance and operation were taken into account. Any improvements to the Long Beach Boulevard corridor need to take into consideration that this is an evacuation route and that the five-lane width must be maintained for emergency vehicles throughout the majority of the RSA study area. Therefore, improvements will focus on signing, striping, and encouraging uniformity in traffic signals rather than recommending the installment of physical barriers.

The intersections and roadway segments along Long Beach Boulevard in the southern half of the island, which were selected for further analyses, are based on crash data and the variations of the different traffic signal layouts as well as marked and unmarked intersections. The roadway segments and intersections studied in the RSA are as follows:

Roadway Sections

1)	Two-Lane Roadway without Crosswalks

Janet Road to Joan Road (MP 0.23 to MP 0.26):
This section is in the southern end of the island. There are 12.5-foot lanes in each direction with 5 -foot shoulders. This section of roadway has significantly less traffic volume than the rest of the RSA study area. Pedestrians and bicycle activity coexist with fewer cars.

Unsignalized Intersections

3) Five-Lane Roadway with Crosswalk

26th Street (MP 3.75): The roadway section includes two lanes in each direction with a two-way-left-turn lane. The pavement width is 69 feet, with wide outside lanes to accommodate parking. There are no shoulders. There is one marked crosswalk across Long Beach Boulevard, the only one within seven blocks, primarily serving pedestrians going to and from the beach.

Road Safety Audit Process

Long Beach Boulevard RSA followed a process that began with data collection, a crucial task that served as the backbone for improvement recommendations. Crash data was collected using Plan4Safety, a crash data analysis tool, and consisted of crash types, locations, years, road conditions, and contributing circumstances. Because of the varied nature of this RSA corridor and the many intersections contained within the project area, crash diagrams were not created (except for 48th Street). Instead, a systemic approach was utilized, analyzing the various cross sections and the variety of intersection treatments.

Figure 4 - RSA team conducting site visit

The Road Safety Audit (RSA) occurred on Tuesday, August 28, 2012. The day began with a pre-audit meeting that involved the definition of an RSA and an overview of the project corridor. A presentation showing details of the crash analysis, aerial images of the site, and an overview of the pedestrian and vehicle activity in the area was shown. Following the presentation, a site visit was conducted where all participants were given a chance to inspect the sites and utilize their various backgrounds to brainstorm recommended improvements. After the site visit, the team reconvened to discuss the issues observed and recommendations to remedy the issues, which are documented in this report.

Information Sources

Several sources of information were used in the RSA process. For example, crash data from 2009 to 2011 was examined for trends and patterns. Specific resources used in the analysis include:

- NJDOT Crash Database (2009 to 2011)
- Plan4Safety Crash Data Analysis Tool
- NJTR-1 Crash Reports
- NJDOT Straight Line Diagrams
- Google Earth

RSA Team

The RSA team consisted of 21 members, including police officers, engineers, and planners from different agencies across the state.

Name	Organization	Phone	Email
Michael Bradley	Long Beach Township	609-361-2050	mbradley@lbtpd.org
Douglas Dillon	NJDOT BTE	609-530-3729	douglas.dillon@dot.state.nj.us
Charles Gordon	Ocean County	732-929-2130	charlesgordon@co.ocean.nj.us
Jonathan Hawkins	Voorhees Transportation Center	704-576-2360	jonathan.hawkins@rutgers.edu
Mark Jehnke	Ocean County	732-349-8165	mjehnke@co.ocean.nj.us
Andy Kaplan	Rutgers' TSRC	848-445-2897	andy.kaplan@rutgers.edu
Sally Karasov	Rutgers' TSRC	848-445-2898	sally.karasov@rutgers.edu
Frank Little	Township Engineer	732-244-1090	flittle@owenlittle.com
Ann Mancuso	Ocean County	732-349-8165	amancuso@co.ocean.nj.us
Christine Mittman	NJTPA	973-639-8448	cmittman@njtpa.org
Ed O'Connor	NJTHTS	609-575-9275	edward.oconnor@lps.state.nj.us
Joan Reck	TMA Ocean	609-452-1491	jlockwood-reck@gmtma.org
William Riviere	NJDOT Bike/Pedestrian	609-530-4646	william.riviere@dot.state.nj.us
Andrés Roda	Rutgers' CAIT	848-445-2915	aroda@rci.rutgers.edu
Patti Sansone	Ocean County	732-288-7625	psansone@co.ocean.nj.us
Lauren Schroetter	Ocean County	732-929-2130	Ischroetter@co.ocean.nj.us
Craig B. Sneddon	Ocean County	732-349-8165	kerrys3@comcast.net
Virgilio S. Tan	NJDOT BTDS	609-530-5696	virgilio.tan@dot.state.nj.us
Elizabeth Thompson	NJTPA	973-639-8441	ethompson@njtpa.org
Paul Vereb	Long Beach Township Police Department	609-548-8652	pvereb@lbtpd.org
Michael Weber	Rutgers' TSRC	848-445-2893	michael.weber@rutgers.edu

Crash Data

As of the date of this report, the crash data reported to the NJDOT shows a total of 172 crashes occurring during the three-year period from 2009 to 2011. The following tables show detail statistics of the crash data analyzed.

		SEVERITY		
		Property Damage	Injury	TOTAL
	Same Direction-Rear End	64	23	87
	Same Direction-Side Swipe	16		16
	Right Angle	26	5	31
	Struck Parked Vehicle	12		12
	Left Turn / U-Turn		1	1
	Backing	9		9
	Fixed Object	7	2	9
	Pedalcyclist	2	3	5
	Other		2	2
TOTAL		136	36	172

Table 1 - Crash type vs. severity 2009 to 2011

		VEHICLE - CONTRIBUTING CIRCUMSTANCES																		
		$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0.2 \\ & \underline{0} \\ & \hline \end{aligned}$	Improper Passing				0 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { y } \\ & \text { den } \end{aligned}$	Other Vehicle Factor				$\frac{3}{2}$	TOTAL
	Unknown	1																		1
	Going Straight Ahead		69	3	3		2	2	10		59	1		1		1	1	1		153
	Making Right Turn (Not Turn on Red)		2		1			1			4									8
	Making Left Turn		7		2			7			11							1		28
일	Making U-Turn							1												1
$\stackrel{4}{4}$	Starting From Parking		1																	1
U	Starting in Traffic		3						2		1									6
$\stackrel{\overline{\mathrm{I}}}{\mathbf{2}}$	Slowing or Stopping		16						1		21	2	2							42
$\overline{\bar{x}}$	Stopped in Traffic		5								52									57
山	Parking		2																	2
1	Parked		1								12	1			1				1	16
U	Changing Lanes		2			2													1	5
$\frac{\mathbf{~}}{\boldsymbol{y}}$	Merging/Entering Lane			1	1															2
	Backing		6							4										10
	Passing		1				1				2									4
	Other Vehicle/Cyclist Action							1												1
	NULL																		1	1
	TOTAL	1	115	4	7	2	3	12	13	4	162	4	2	1	1	1	1	2	3	

Table 2 - Vehicle contributing circumstances vs. vehicle pre-crash action

As can be seen from the tables above, the predominant crash type is "Same Direction-Rear End". There were also a significant number of "Right Angle" crashes. The significant pre-crash vehicle action" is "Going Straight Ahead"; also significant are "Slowing or Stopping" and "Stopped in Traffic." This correlates with the predominant crash type. The primary contributing circumstance" is "Driver Inattention."

		CRASH TYPE									
		Same DirectionRear End	Same DirectionSide Swipe	Right Angle	Struck Parked Vehicle	Left Turn / U-Turn	Backing	Fixed Object	Pedalcyclist	Other	TOTAL
	At Intersection	24	7	21	2	1	1	5		1	62
	Not At Intersection	63	9	10	10		8	4	5	1	110
	TOTAL	87	16	31	12	1	9	9	5	2	

		SURFACE			
		Dry	Wet	Water (Standing/Moving)	TOTAL
	Daylight	129	8	1	138
	Dawn	3			3
	Dusk	6	2		8
	Dark (Street Lights On/Continuous)	17	4		21
	Dark (Street Lights On/Spot)	2			2
TOTAL		157	14	1	172

Table 4 - Surface condition vs. light condition

As can be seen from the tables above, 80 percent of the crashes occurred during daylight hours, and more than 90 percent of the crashes occurred during dry conditions. Also, slightly less than two-thirds of the crashes occurred between intersections.

The table below makes it very clear that the majority of the crashes occurred during the summer tourist season.

Figure 5 - Crashes by month 2009 to 2011

Pedestrian Crashes

There were many pedestrians indirectly involved in crashes, according to the police officers and other RSA team members familiar with the area. In reading some of the crash narratives, it was noted that pedestrians were involved in precipitating a crash yet were not impacted directly. Therefore, pedestrians were underreported based on the crash data available. It was also noted that there was some confusion in coding and that some of the crashes that occurred in the northern part of Long Beach Island were coded for the southern half of Long Beach Island, the area of this RSA study.

Long Beach Boulevard

The following represents the specific findings and recommendations made by the RSA team. All recommendations and designs should be thoroughly evaluated with due diligence and designed as appropriate by the roadway owner and/or a professional engineer for conformance to codes, standards, and best practices

General

Description: The current roadway cross section is experiencing high vehicle operating speed.

Speed reduction may be encouraged by narrowing lanes from 12 to 11 feet. (2)	Low	High
Consider the delineation of the edge of the outer travel lane with shoulder markings. (3)	Low	High

Proposed cross section on top; existing cross section on bottom ${ }^{1}$
${ }^{1}$ The proposed cross section includes substandard elements in order to accommodate existing on-street parking. The design engineer should determine the best specific cross section throughout the roadway. A full width (12-foot) two-way-left-turn lane could be maintained by narrowing the inside travel lanes to 10 feet ($8^{\prime}-11^{\prime}-10^{\prime}-12^{\prime}-10^{\prime}-11^{\prime}-8^{\prime}$).

Issue: Lack of Familiarity		Safety Risk
Description: Many roadway users are tourists or otherwise not familiar with the local traffic patterns.		Medium

Signage

Pedestrians - Signalized Intersections

Issue: Pedestrian Heads	Safety Risk	
Description: Traffic signals lack pedestrian heads or have older, non-countdown pedestrian signal heads or no pedestrian heads.	Medium/High	
Description: Pedestrians appear to have difficulty crossing at signalized intersections.	Medium	
RSA Team's Recommendation	Cost	Potential Safety Benefit
Consider installation or upgrade of countdown pedestrian heads at signalized intersections.(9)	Medium	Medium/High

Pedestrians - Unsignalized Intersections

| Issue: Uniformity of Crosswalks | |
| :--- | :--- | :--- | :--- |
| Description: There is a lack of consistency in the
 overall marking, signage, and locations of
 unsignalized crosswalks. | |

Issue: Crosswalk Placement
Description: Progression of traffic creates gaps, but limited alignment of gaps at unsignalized intersections strands pedestrians in the middle of the roadway.

Safety Risk

RSA Team's Recommendation	Cost	Potential Safety Benefit
Review feasibility of pedestrian refuge islands (striped or mountable) that pedestrians can cross to and safely wait for a gap in opposing traffic. (12)	Low (Striped), Medium (Mountable)	Medium/High
Any pedestrian median refuge islands should be installed such that they are mountable for emergency vehicle access and to allow for emergency evacuation activities. (13)	N/A	
Any pedestrian median refuge islands should be visually differentiated from the roadway pavement in order to raise awareness of pedestrian crossing locations and increase perception of safety by pedestrians. Consider vegetation, traffic stanchions, or other mountable objects.(14)		
Alternate 1: Consider installation of pedestrian refuge		
islands at each intersection, alternating with location of left-turn lane from Long Beach Boulevard. (See Crosswalks - Alternative 1.) (15)		N/A

Crosswalks - Alternative 1

Crosswalks - Alternative 2

Crosswalks - Alternative 3

Investigate the installation of active warning beacons, especially rectangular rapid flashing beacons, at unsignalized marked crossing locations where additional visibility is needed. (20)	Medium	Medium/High
Where additional visibility is needed, consider installing supplemental overhead pedestrian crossing signage. (21)	Medium/High	Medium/High
Pedestrians may be encouraged to use sidewalks by providing streetscaping along the roadway, making them more comfortable. This would also increase driver awareness of potential pedestrian activity. (22)	Medium	
The addition of pedestrian way-finding signs to clearly direct pedestrians may increase safer pedestrian behavior. (23)	Low/Medium	High
Consider providing an unsignalized crossing location periodically between signals, at consistent intervals. (Every block, every other block, every third block, etc.) (11)	Medium	Medium/High

Parking Impacts

Issue: Sight Distance	Safety Risk	
Description: Cars were observed parked along Long Beach Boulevard, obstructing the sight distance of pedestrians at crosswalks.		Medium/High

Traffic Signals

Description: There are a number of different combinations of signal head configurations at traffic signals: vertical, horizontal, on span wires,

Medium

 and on poles. The inconsistency can be confusing to drivers.

RSA Team's Recommendation
Cost Potential Safety Benefit
A standard signal configuration should be developed and implemented as signal equipment is upgraded in conformance with the MUTCD. (30)

Consider installation of 12-inch lenses for vehicle signal heads as per MUTCD. (31)

Lighting

Issue: Inadequate Lighting	Safety Risk	
Description: Lighting was inconsistent and not uniform, and may not address the nighttime visibility needs of both pedestrians and vehicles.	Medium	
RSA Team's Recommendation	Cost	Potential Safety Benefit
Have professional staff conduct a formal engineering review of existing lighting conditions to evaluate where both vehicle and pedestrian level lighting can be enhanced. Additional consideration should be given at designated unsignalized pedestrian crossing locations. (32)	High	

Bicycle

Implementing Recommendations

The RSA Team's recommendations suggested in this report should improve the safety of Long Beach Boulevard in the RSA area, the southern half of Long Beach Island. Many of the recommendations can be implemented through routine maintenance, while others will take more time and investment. Creating a corridor with uniformity of crosswalks, traffic signals, and signage will go a long way to improve driver and pedestrian expectations.

Recognizing limited resources and developing partnerships can help to extend the impact of safety efforts. Rutgers' TSRC can provide support to municipalities and counties in identifying partnership opportunities. North Jersey Transportation Planning Authority (NJTPA) staff also provides a great partnership to assist with analysis with respect to crash data, capacity analysis, or any other related assistance.

Some of the recommendations may require sizable capital investment to obtain a long-term safety benefit. It is understood that larger projects may require funding assistance from non-county and nonmunicipal funds. In the section following the recommendations, various potential funding sources are listed.

However, physical improvements alone will not eliminate the safety issues identified. This area is predominantly a vacation destination with a continually changing population during peak seasons that is, therefore, unfamiliar with traffic patterns and safety issues. Education of the transient population is especially important in this situation. In addition, a combined effort of public education and police enforcement is necessary to make this corridor a safer place for all users. Education about traffic safety in public schools, such as drivers' education courses in high school and distributing informational pamphlets to pedestrians, are just two examples of the different educational campaigns that can benefit road users. Enforcement, especially in the areas of parking and pedestrian right-of-way, can go a long way in reducing crashes and alerting drivers of the seriousness of being safety conscious.

All of the recommendations fall under the jurisdiction of Ocean County, and any potential projects generated from this report would be led by Ocean County.

The following information organizes the recommendations into potential course of actions:

| Recommendations | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Recommendations

Recommendations

		Two-Lane Roadway			
		\checkmark	\checkmark		\checkmark
ere		\checkmark	\checkmark	\checkmark	\checkmark
		\checkmark	\checkmark		\checkmark
ead		\checkmark	\checkmark		\checkmark
-		\checkmark	\checkmark	\checkmark	\checkmark
y		\checkmark	\checkmark	\checkmark	\checkmark
		\checkmark	\checkmark	\checkmark	\checkmark
		\checkmark	\checkmark	\checkmark	\checkmark
		\checkmark	\checkmark	\checkmark	\checkmark

Recommendations

	\checkmark	\checkmark	\checkmark	\checkmark
			\checkmark	
			\checkmark	
			\checkmark	
	\checkmark	\checkmark	\checkmark	\checkmark
	\checkmark	\checkmark	\checkmark	\checkmark
	\checkmark	\checkmark	\checkmark	\checkmark

Potential Funding Sources

In this economy, budget constraints may hamper the implementation of some of these recommendations. Finding alternative funding sources is critical to ensuring the investment in the safety of the intersections' users.

Local Funding Sources:

Roadway Owner's Maintenance and Operation Budget:

Existing funds from local and county sources, as appropriate, which are allocated for investment in maintenance and operational activity, can be used to implement the above suggestions. Many of the above countermeasures may be eligible for the appropriate use of these existing funds. The manager of these funds who understands the full budget picture should be consulted.

State Funding Sources:

LOCAL AID

Contact:
NJDOT Local Aid District 3 (Hunterdon, Mercer, Middlesex, Monmouth, Ocean, Somerset)
District 3, Bureau of Local Aid
PO Box 600
Trenton, NJ 08625-0600
Phone: 732-625-4290
Fax: 732-625-4292

MUNICIPAL AID/URBAN AID PROGRAM (NJDOT Local Aid):

http://www.state.nj.us/transportation/business/localaid/municaid.shtm

This program has been a significant resource for municipalities in funding local transportation projects. All municipalities are eligible. The department continues to encourage municipalities to consider using the Municipal Aid Program to fund projects such as resurfacing, rehabilitation, or reconstruction and signalization.

LOCAL AID INFRASTRUCTURE FUND (Discretionary Aid):

http://www.state.nj.us/transportation/business/localaid/descrfunding.shtm
Subject to funding appropriation, a discretionary fund is established to address emergencies and regional needs throughout the state. Any county or municipality may apply at any time. These projects are approved at the discretion of the commissioner. Payment of project costs is the same as the Municipal Aid Program. Under this program a county or municipality may also apply for funding for local pedestrian safety and bikeway projects.

SAFE STREETS TO TRANSIT:

http://www.state.nj.us/transportation/business/localaid/safe.shtm

This program provides funding to counties and municipalities in improving access to transit facilities and all modes of public transportation. The objectives of the SSTT program are:

- To improve the overall safety and accessibility for mass transit riders walking to transit facilities
- To encourage mass transit users to walk to transit stations
- To facilitate the implementation of projects and activities that will improve safety in the vicinity of transit facilities (approximately one half-mile for pedestrian improvements)

HIGHWAY SAFETY FUND (Safe Corridors):

The Safe Corridor grant program targets resources to segments of several highways that have a history of high crash rates. Grants are supported by fines that are doubled in designated Safe Corridors for a variety of moving violations, including speeding. FY12 Safe Corridors funding is being allocated based on crash data, with higher amounts of funding going to areas demonstrating the greatest need for continued enhanced enforcement measures. The link to a website is still in development.

Contact:

Shukri Abuhuzeima
Supervising Engineer
NJDOT Local Aid
Phone: 609-530-4680
Email: Shukri.Abuhuzeima@dot.state.nj.us

BIKEWAY:

http://www.state.nj.us/transportation/business/localaid/bikewaysf.shtm

The NJDOT Bikeway Grant Program provides funds to counties and municipalities to promote bicycling as an alternate mode of transportation in New Jersey. A primary objective of the Bikeway Grant Program is to support the state's goal of constructing 1,000 new miles of dedicated bike paths. This program is available to every municipality and county throughout New Jersey.

TRANSIT VILLAGES:

http://www.state.nj.us/transportation/business/localaid/transitvillagef.shtm

The Transit Village Grant Program is designed to assist municipalities who have been formally designated as Transit Villages. These are municipalities that have made a commitment to grow in the area surrounding a transit facility. The facility can service commuter rail, bus, ferry, or light rail. It funds projects within a half-mile radius of major transit facilities.

Contact:

Leroy Gould
Transit Village Coordinator
Phone: 609-530-3864
Email: Leroy.gould@dot.state.nj.us

NEW JERSEY DEPARTMENT OF COMMUNITY AFFAIRS

MAIN STREET NEW JERSEY

http://www.nj.gov/dca/divisions/dhcr/offices/msnj.html

Main Street New Jersey provides selected communities with technical assistance and training of proven value in revitalizing historic downtowns. The program helps municipalities improve the economy, appearance, and image of their central business districts through the organization of local citizens and resources.

Contact:

Main Street New Jersey
NJ Department of Community Affairs - Office of Smart Growth
P.O. Box 204

Trenton, NJ 08625-0204
Jef Buehler
Phone: 609-633-9769
Email: jef.buehler@dca.state.nj.us

COMMUNITY DEVELOPMENT BLOCK GRANT (CDBG)

http://www.nj.gov/dca/divisions/dhcr/offices/cdbg.html
The Community Development Block Grant provides funds for economic development, housing rehabilitation, community revitalization, and public facilities designated to benefit people of low and moderate income, to prevent or eliminate slums and blight, or to address recent local needs for which no other source of funding is available.

Contact:

New Jersey Department of Community Affairs
101 South Broad Street
PO Box 811, $5^{\text {TH }}$ Floor
Trenton, NJ 08625-0800
Terry Schrider
Phone: 609-633-6283
Email: terence.schrider@dca.state.nj.us

Federal Funding Sources - via NJDOT Office of Local Aid:

Contact (see details under State Funding section):
NJDOT Local Aid District 3 (Hunterdon, Mercer, Middlesex, Monmouth, Ocean, Somerset)

SAFE ROUTES TO SCHOOLS (SRTS):

http://www.state.nj.us/transportation/business/localaid/srts.shtm

The Safe Routes to Schools (SRTS) Program is a federally funded program and is administered by the New Jersey Departments of Transportation. This program provides funds to substantially improve the ability of primary and middle school students to walk and bicycle to school safely.

The purposes of the program are:

- to enable and encourage children, including those with disabilities, to walk and bicycle to school;
- to make bicycling and walking to school a safer and more appealing transportation alternative, thereby encouraging a healthy and active lifestyle from an early age;
- to facilitate the planning, development, and implementation of projects and activities that will improve safety and reduce traffic, fuel consumption, and air pollution in the vicinity (approximately two miles) of primary and middle schools (grades K through 8).

The program establishes two distinct types of funding opportunities: infrastructure projects (the planning, design, and construction of engineering improvements) and non-infrastructure related activities (such as education, enforcement, and encouragement programs).

Contact:

Elise M Bremer-Nei
Supervising Planner Transportation, NJDOT
Statewide Planning
Phone: 609-530-2765
Email: Elise.Bremer-Nei@dot.state.nj.us

via North Jersey Transportation Planning Authority (NJTPA):

Contact:

North Jersey Transportation Planning Authority
One Newark Center, 17th Floor
Newark, NJ 07102
Phone: 973-639-8400
Fax: 973-639-1953

LOCAL SAFETY PROGRAM:

http://www.njtpa.org/Project/Devel/local safety/default.aspx

The federally funded Local Safety Program (LSP) is a component of wider safety planning at the NJTPA, supporting construction of quick-fix, high-impact safety improvements on county and local roadway facilities in the NJTPA region. Projects supported by this program include new and upgraded traffic signals, signage, pedestrian indications, crosswalks, curb ramps, pavement markings, and other improvements to increase the safety of drivers, bicyclists, and pedestrians.

The Local Safety Program:

- typically addresses NJTPA and/or NJDOT derived high-priority crash locations on county or local roadways;
- supports quick-fix projects, backed with detailed crash data, with minimal or no environmental or cultural resource impacts (eligible for programmatic categorical exclusion from FHWA);
- funds the construction phase of work only-planning, design, and right-of-way acquisition are the responsibility of the sponsor.

LOCAL CMAQ MOBILITY INITIATIVES:

http://www.njtpa.org/Project/Mobility/Default.aspx
The NJTPA established the CMAQ Local Mobility Initiatives Program to promote a variety of initiatives-including ridesharing, transit usage, travel demand management, and traffic mitigation projects-to lessen the level of pollutants and greenhouse gases generated through the use of fossil fuels. Proposals must implement strategies and policies in the Regional Transportation Plan, Plan 2040.

THE HIGH RISK RURAL ROADS PROGRAM

http://www.njtpa.org/Project/Devel/local safety/default.aspx

The High Risk Rural Roads Program (HRRRP) provides federal funds for construction improvements to address safety problems only on roadways that are functionally classified as rural major collector, rural minor collector, or rural local roads and have a crash rate that exceeds the statewide average for those functional classes of roadways. Projects supported by this program include skid-resistant surface treatments, guiderails, reflective pavement markings, rumbles strips and rumble stripes, safety edge, and enhanced and advanced warning signs.

This program funds the construction phase of work only, and therefore planning, design, and right-of-way acquisition are the responsibility of the sponsor

LOCAL CONCEPT DEVELOPMENT PHASE of the LOCAL CAPITAL PROJECT DELIVERY PROGRAM
 http://www.njtpa.org/Project/Devel/local capital program/local concept/default.aspx

The Local Capital Project Delivery (LCPD) Program (LCPD) provides federal funding for priority local projects. The LCD Phase involves drafting a well-defined and well-justified Purpose and Need Statement focusing on the primary transportation need to be addressed. The LCD Phase elements include, but are not limited to, data collection, coordination, development of a reasonable number of prudent and feasible conceptual alternatives, and investigation of all aspects of a project (environmental, right-of-way, access, utilities, design, community involvement, constructability, etc., at a "planning level of effort") and addressing requirements of the NJTPA Congestion Management Process (CMP).

SUBREGIONAL STUDIES Program

http://www.nitpa.org/Plan/Subregion/subregional studies/default.aspx
This is a competitive program that provides two-year grants to individual sub-regions or subregional teams. The program is designed to assist sub-regions in refining and developing transportation improvement strategies rooted in the NJTPA's Regional Transportation Plan (RTP). Ultimately, the program aims to generate project concepts ready for further development or implementation consistent with the RTP and/or other transportation planning activities in the region.

TRANSPORTATION ALTERNATIVES PROGRAM

This is new under MAP-21 and is currently under development at the NJDOT. http://www.fhwa.dot.gov/map21/guidance/guidetap.cfm

The Transportation Alternatives Program (TAP) provides funding for programs and projects defined as transportation alternatives, including on- and off-road pedestrian and bicycle facilities, infrastructure projects for improving nondriver access to public transportation and enhanced mobility, community improvement activities, and environmental mitigation; recreational trail program projects; safe routes to school projects; and projects for the planning, design, or construction of boulevards and other roadways largely in the right-of-way of former interstate system routes or other divided highways.

Federal Funding Sources - via NJDOT Department of Highway Safety:

http://www.nj.gov/oag/hts/grants/index.html

The New Jersey Division of Highway Traffic Safety offers, on an annual basis, federal grant funding to agencies that wish to undertake programs designed to reduce motor vehicle crashes, injuries, and fatalities on the roads of New Jersey. Municipal, county, state government, and law enforcement agencies, as well as nonprofit organizations, are encouraged to apply for NJDHTS grant funding to address specific, local traffic safety issues.

Contact:

Ed O'Connor, Central Region Supervisor Phone: 609-633-9048
Email: Edward.O'Connor@lps.state.nj.us

Appendix A

Raw Crash Data

Long Beach Boulevard (CR 607)

CRASH DATE	$\begin{aligned} & \text { CRASH } \\ & \text { TIMME } \end{aligned}$	CRASH TYPE	ENVIRONMENTAL CONDITION	LIGHT CONDITION	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
7/31/2009	6:16 PM	Same Direction - Rear End	Rain	Daylight	0.000	Injury	Water (Standing /Moving)	1	2
8/6/2009	3:37 PM	Same Direction - Rear End	Clear	Daylight	0.000	Injury	Dry	1	2
12/13/2010	$\begin{gathered} 10: 00 \\ \text { AM } \\ \hline \end{gathered}$	Fixed Object	Clear	Daylight	0.038	Property Damage	Dry	0	1
6/26/2011	$\begin{gathered} \hline 11: 16 \\ \text { AM } \\ \hline \end{gathered}$	Fixed Object	Clear	Daylight	1.250	Property Damage	Dry	0	1
7/30/2011	2:45 PM	Same Direction - Rear End	Clear	Daylight	1.250	Injury	Dry	2	3
6/26/2009	6:45 PM	Right Angle	Clear	Dusk	1.520	Property Damage	Dry	0	2
8/11/2010	5:48 PM	Same Direction - Rear End	Clear	Daylight	2.002	Property Damage	Dry	0	2
5/25/2009	9:37 PM	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	2.050	Property Damage	Dry	0	2
3/22/2011	1:47 PM	Fixed Object	Clear	Daylight	2.250	Property Damage	Dry	0	1
7/16/2009	5:25 PM	Struck Parked Vehicle	Rain	Daylight	2.357	Property Damage	Wet	0	2
10/3/2009	$\begin{gathered} 10: 30 \\ \text { PM } \\ \hline \end{gathered}$	Pedalcyclist	Clear	Dark (Street Lights On/ spot)	2.360	Property Damage	Dry	0	1
7/4/2009	$\begin{gathered} 11: 42 \\ \text { AM } \end{gathered}$	Backing	Clear	Daylight	2.390	Property Damage	Dry	0	2

CRASH DATE	$\begin{aligned} & \text { CRASH } \\ & \text { TIME } \end{aligned}$	CRASH TYPE	ENVIRONMENTAL CONDITION	LICHT CONDITION	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
8/2/2009	7:57 AM	Same Direction - Rear End	Clear	Dawn	2.404	Property Damage	Dry	0	2
6/28/2009	5:30 PM	Same Direction - Rear End	Clear	Daylight	2.408	Property Damage	Dry	0	2
6/18/2009	3:41 PM	Pedalcyclist	Clear	Daylight	2.410	Injury	Wet	1	1
8/9/2011	1:05 PM	Backing	Clear	Daylight	2.410	Property Damage	Dry	0	2
6/7/2009	$\begin{gathered} 12: 58 \\ \text { AM } \end{gathered}$	Backing	Clear	Dark (Street Lights On/ continuous)	2.480	Property Damage	Dry	0	2
7/16/2009	$\begin{gathered} 11: 43 \\ \text { AM } \\ \hline \end{gathered}$	Backing	Clear	Daylight	2.480	Property Damage	Dry	0	2
8/3/2011	$\begin{gathered} 12: 08 \\ \text { AM } \\ \hline \end{gathered}$	Struck Parked Vehicle	Clear	Dark (Street Lights On/ continuous)	2.530	Property Damage	Dry	0	2
10/21/2010	9:14 AM	Backing	Clear	Daylight	2.590	Property Damage	Dry	0	2
8/19/2011	$\begin{gathered} \text { 12:07 } \\ \text { PM } \end{gathered}$	Same Direction - Side Swipe	Clear	Daylight	2.590	Property Damage	Dry	0	2
11/6/2010	$\begin{gathered} \text { 12:00 } \\ \text { PM } \end{gathered}$	Same Direction - Rear End	Clear	Daylight	2.593	Property Damage	Dry	0	3
7/31/2011	5:11 PM	Backing	Clear	Daylight	2.640	Property Damage	Dry	0	2
6/30/2010	1:57 PM	Same Direction - Rear End	Clear	Daylight	2.697	Property Damage	Dry	0	2
7/31/2009	6:13 PM	Same Direction - Rear End	Rain	Daylight	2.746	Property Damage	Wet	0	2
6/27/2010	9:30 PM	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	2.760	Property Damage	Dry	0	2

CRASH	$\begin{aligned} & \text { CRASH } \\ & \text { TIMME } \end{aligned}$	CRASH TYPE	$\begin{aligned} & \text { ENVIRON- } \\ & \text { MENTAL } \\ & \text { CONDITION } \end{aligned}$	$\begin{aligned} & \text { LIGHT } \\ & \text { CONDITION } \end{aligned}$	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
8/12/2011	7:00 PM	Struck Parked Vehicle	Clear	Dark (Street Lights On/ continuous)	2.790	Property Damage	Dry	0	2
8/14/2010	9:51 PM	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	2.810	Property Damage	Dry	0	2
9/12/2011	6:23 PM	Same Direction - Side Swipe	Overcast	Daylight	2.830	Property Damage	Dry	0	2
7/27/2010	9:32 PM	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	2.840	Property Damage	Dry	0	2
8/6/2011	$\begin{gathered} 10: 25 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	2.840	Property Damage	Dry	0	2
7/3/2009	7:39 PM	Backing	Clear	Dusk	2.890	Property Damage	Dry	0	2
7/22/2010	9:48 PM	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	2.890	Property Damage	Dry	0	2
8/3/2010	$\begin{gathered} 10: 54 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	2.893	Property Damage	Dry	0	2
10/13/2010	7:05 AM	Fixed Object	Clear	Dawn	2.940	Property Damage	Dry	0	1
12/14/2010	2:24 PM	Fixed Object	Clear	Daylight	3.020	Injury	Dry	1	1
9/3/2010	9:15 PM	Pedalcyclist	Clear	Dark (Street Lights On/ continuous)	3.060	Property Damage	Dry	0	1
8/6/2011	$\begin{gathered} \text { 11:59 } \\ \text { AM } \end{gathered}$	Right Angle	Clear	Daylight	3.070	Property Damage	Dry	0	2
7/8/2010	3:40 PM	Same Direction - Side Swipe	Clear	Daylight	3.110	Property Damage	Dry	0	2

CRASH DATE	CRASH TIME	CRASH TYPE	ENVIRONMENTAL CONDITION	$\begin{aligned} & \text { LIGHT } \\ & \text { CONDITION } \end{aligned}$	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
7/3/2009	7:35 PM	Right Angle	Clear	Daylight	3.120	Property Damage	Dry	0	2
7/11/2011	$\begin{gathered} 12: 05 \\ \text { AM } \\ \hline \end{gathered}$	Same Direction - Side Swipe	Clear	Dark (Street Lights On/ continuous)	3.120	Property Damage	Dry	0	2
8/7/2009	2:15 PM	Right Angle	Clear	Daylight	3.165	Property Damage	Dry	0	2
7/20/2011	4:15 PM	Same Direction - Rear End	Clear	Daylight	3.170	Property Damage	Dry	0	2
8/4/2011	1:15 AM	Same Direction - Rear End	Clear	Daylight	3.170	Property Damage	Dry	0	2
8/26/2009	3:47 PM	Same Direction - Rear End	Clear	Daylight	3.174	Property Damage	Dry	0	2
9/18/2010	1:28 PM	Same Direction - Rear End	Clear	Daylight	3.215	Injury	Dry	1	2
7/18/2010	$\begin{gathered} \text { 11:00 } \\ \text { AM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Daylight	3.220	Property Damage	Dry	0	2
8/8/2011	$\begin{gathered} \hline 12: 10 \\ \text { PM } \end{gathered}$	Same Direction - Side Swipe	Clear	Daylight	3.220	Property Damage	Dry	0	2
8/7/2009	1:04 PM	Right Angle	Clear	Daylight	3.260	Property Damage	Dry	0	2
7/17/2010	6:20 PM	Same Direction - Rear End	Clear	Daylight	3.260	Property Damage	Dry	0	2
7/20/2011	9:38 AM	Same Direction - Side Swipe	Clear	Daylight	3.260	Property Damage	Dry	0	2
5/25/2009	9:30 AM	Same Direction - Rear End	Clear	Daylight	3.310	Property Damage	Dry	0	2
5/29/2009	8:38 PM	Right Angle	Rain	Dusk	3.310	Property Damage	Wet	0	2
8/17/2009	$\begin{gathered} 11: 40 \\ \text { AM } \end{gathered}$	Right Angle	Clear	Daylight	3.310	Property Damage	Dry	0	2
4/5/2009	1:33 PM	Right Angle	Clear	Daylight	3.360	Injury	Dry	1	2

CRASH DATE	CRASH TIME	CRASH TYPE	$\begin{aligned} & \text { ENVIRON- } \\ & \text { MENTAL } \end{aligned}$ CONDITION	$\begin{gathered} \text { LIGHT } \\ \text { CONDITION } \end{gathered}$	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
6/1/2010	2:43 PM	Same Direction - Rear End	Clear	Daylight	3.360	Property Damage	Dry	0	2
6/1/2010	4:58 PM	Right Angle	Clear	Daylight	3.410	Property Damage	Dry	0	2
7/11/2010	6:20 PM	Right Angle	Clear	Daylight	3.447	Property Damage	Dry	0	2
7/19/2010	2:16 PM	Same Direction - Side Swipe	Clear	Daylight	3.450	Property Damage	Dry	0	2
8/7/2009	9:52 AM	Same Direction - Rear End	Clear	Daylight	3.498	Property Damage	Dry	0	2
6/25/2010	$\begin{gathered} 10: 22 \\ \text { AM } \end{gathered}$	Same Direction - Rear End	Clear	Daylight	3.500	Property Damage	Dry	0	2
8/16/2009	8:24 PM	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	3.502	Property Damage	Dry	0	2
10/2/2010	$\begin{gathered} 11: 30 \\ \text { AM } \end{gathered}$	Same Direction - Rear End	Clear	Daylight	3.590	Property Damage	Dry	0	2
7/17/2011	8:15 PM	Same Direction - Rear End	Clear	Dusk	3.600	Property Damage	Dry	0	2
8/27/2009	4:47 PM	Same Direction - Rear End	Clear	Daylight	3.610	Property Damage	Dry	0	2
7/29/2009	2:20 PM	Same Direction - Rear End	Clear	Daylight	3.640	Property Damage	Dry	0	2
7/5/2010	2:50 PM	Same Direction - Rear End	Clear	Daylight	3.640	Property Damage	Dry	0	2
8/20/2011	3:24 PM	Same Direction - Rear End	Clear	Daylight	3.750	Property Damage	Dry	0	2
9/17/2009	7:34 PM	Struck Parked Vehicle	Clear	Dark (Street Lights On/ continuous)	3.805	Property Damage	Dry	0	2
6/19/2010	4:30 PM	Same Direction - Rear End	Clear	Daylight	3.930	Property Damage	Dry	0	2

CRASH DATE	CRASH TIME	CRASH TYPE	ENVIRONMENTAL CONDITION	LIGHT CONDITION	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
7/11/2010	$\begin{gathered} \text { 12:07 } \\ \text { AM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	3.930	Property Damage	Dry	0	2
8/28/2010	5:39 PM	Same Direction - Side Swipe	Clear	Daylight	4.013	Property Damage	Dry	0	2
7/24/2009	8:02 PM	Right Angle	Clear	Daylight	4.070	Property Damage	Dry	0	2
6/2/2010	2:38 PM	Same Direction - Rear End	Clear	Daylight	4.110	Injury	Dry	3	2
7/10/2009	4:42 PM	Struck Parked Vehicle	Clear	Daylight	4.133	Property Damage	Dry	0	2
8/21/2009	$\begin{gathered} 10: 30 \\ \text { AM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Daylight	4.140	Property Damage	Dry	0	2
6/11/2010	$\begin{gathered} \hline 12: 36 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Daylight	4.170	Injury	Dry	1	2
9/22/2010	3:34 PM	Same Direction - Rear End	Clear	Daylight	4.177	Property Damage	Dry	0	2
6/18/2010	$\begin{gathered} 12: 43 \\ \text { PM } \end{gathered}$	Right Angle	Clear	Daylight	4.180	Property Damage	Dry	0	2
7/27/2009	1:45 PM	Struck Parked Vehicle	Rain	Daylight	4.310	Property Damage	Wet	0	2
1/30/2009	9:01 AM	Right Angle	Clear	Daylight	5.530	Property Damage	Dry	0	2
9/30/2009	$\begin{gathered} \text { 10:20 } \\ \text { AM } \end{gathered}$	Right Angle	Clear	Daylight	5.980	Property Damage	Dry	0	2
6/5/2010	7:50 AM	Other	Clear	Daylight	6.200	Injury	Dry	1	1
7/23/2010	$\begin{gathered} 12: 20 \\ \mathrm{PM} \end{gathered}$	Same Direction - Rear End	Clear	Daylight	6.200	Property Damage	Dry	0	2
6/28/2009	2:08 PM	Struck Parked Vehicle	Clear	Daylight	6.89	Property Damage	Dry	0	2
7/7/2009	6:28 PM	Same Direction - Side Swipe	Clear	Daylight	6.900	Property Damage	Dry	0	2

CRASH DATE	CRASH TIME	CRASH TYPE	ENVIRON- MENTAL CONDITION	$\begin{gathered} \text { LIGHT } \\ \text { CONDITION } \end{gathered}$	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
7/23/2009	9:21 PM	Same Direction - Rear End	Rain	Dark (Street Lights On/ continuous)	7.140	Injury	Wet	1	2
10/26/2009	3:53 PM	Fixed Object	Clear	Daylight	7.280	Property Damage	Dry	0	1
9/20/2009	9:50 PM	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	7.370	Property Damage	Dry	0	2
8/14/2010	3:45 PM	Same Direction - Rear End	Clear	Daylight	7.455	Property Damage	Dry	0	2
8/25/2010	$\begin{gathered} 12: 15 \\ \text { AM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Daylight	7.596	Property Damage	Dry	0	2
8/8/2010	$\begin{gathered} 11: 50 \\ \text { AM } \\ \hline \end{gathered}$	Right Angle	Clear	Daylight	7.600	Property Damage	Dry	0	2
8/11/2010	$\begin{gathered} 12: 30 \\ \text { PM } \end{gathered}$	Right Angle	Clear	Daylight	7.600	Injury	Dry	1	2
8/30/2010	5:30 PM	Right Angle	Clear	Daylight	7.600	Property Damage	Dry	0	2
5/14/2011	6:05 PM	Right Angle	Clear	Daylight	7.600	Property Damage	Dry	0	2
6/2/2011	$\begin{gathered} 11: 24 \\ \text { AM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Daylight	7.600	Injury	Dry	1	2
9/3/2011	9:02 PM	Same Direction - Rear End	Clear	Dark (Street Lights On/ continuous)	7.600	Property Damage	Dry	0	2
11/16/2009	9:05 AM	Left Turn / U Turn	Clear	Daylight	7.680	Injury	Dry	1	2
7/3/2011	7:42 PM	Same Direction - Rear End	Rain	Daylight	7.685	Property Damage	Wet	0	2
6/24/2011	5:34 AM	Right Angle	Clear	Dawn	7.690	Injury	Dry	1	2
5/29/2011	7:15 PM	Same Direction - Rear End	Clear	Daylight	7.750	Property Damage	Dry	0	2

CRASH DATE	$\begin{aligned} & \text { CRASH } \\ & \text { TIME } \end{aligned}$	CRASH TYPE	ENVIRONMENTAL CONDITION	$\begin{aligned} & \text { LIGHT } \\ & \text { CONDITION } \end{aligned}$	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
7/8/2010	4:24 PM	Same Direction - Rear End	Clear	Daylight	7.755	Property Damage	Dry	0	2
9/3/2011	1:20 PM	Backing	Clear	Daylight	7.820	Property Damage	Dry	0	2
10/5/2009	5:36 PM	Same Direction - Rear End	Clear	Daylight	7.830	Injury	Dry	1	2
6/21/2010	8:49 PM	Same Direction - Side Swipe	Clear	Dusk	7.830	Property Damage	Dry	0	2
7/7/2010	$\begin{gathered} 11: 12 \\ \text { AM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Daylight	7.830	Injury	Dry	4	2
11/3/2010	3:55 PM	Fixed Object	Clear	Daylight	7.830	Property Damage	Dry	0	1
8/9/2010	1:23 PM	Same Direction - Rear End	Clear	Daylight	7.864	Property Damage	Dry	0	2
7/28/2009	1:00 PM	Same Direction - Rear End	Clear	Daylight	7.980	Property Damage	Dry	0	3
6/13/2011	7:56 PM	Fixed Object	Clear	Daylight	8.020	Injury	Dry	1	1
7/8/2009	$\begin{gathered} 10: 19 \\ \text { AM } \end{gathered}$	Struck Parked Vehicle	Clear	Daylight	8.060	Property Damage	Dry	0	2
8/4/2011	2:17 PM	Same Direction - Rear End	Clear	Daylight	8.080	Property Damage	Dry	0	2
8/28/2009	8:17 PM	Same Direction - Rear End	Rain	Dark (Street Lights On/ continuous)	8.085	Property Damage	Wet	0	2
9/2/2010	3:30 PM	Same Direction - Rear End	Clear	Daylight	8.088	Property Damage	Dry	0	2
5/21/2009	7:21 PM	Same Direction - Rear End	Clear	Daylight	8.090	Property Damage	Dry	0	2
8/20/2009	1:38 PM	Same Direction - Rear End	Clear	Daylight	8.090	Property Damage	Dry	0	2
8/25/2011	$\begin{gathered} 11: 30 \\ \text { PM } \end{gathered}$	Same Direction - Side Swipe	Clear	Dark (Street Lights On/ continuous)	8.090	Property Damage	Wet	0	2

CRASH DATE	CRASH TIME	CRASH TYPE	ENVIRONMENTAL CONDITION	LIGHT CONDITION	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
8/14/2009	7:55 PM	Right Angle	Clear	Dusk	8.130	Property Damage	Dry	0	2
9/7/2009	$\begin{gathered} 11: 18 \\ \text { AM } \\ \hline \end{gathered}$	Same Direction - Rear End	Overcast	Daylight	8.130	Injury	Dry	1	2
7/11/2009	6:53 AM	Pedalcyclist	Clear	Daylight	8.133	Injury	Dry	1	1
5/2/2009	$\begin{gathered} 12: 28 \\ \text { PM } \end{gathered}$	Backing	Clear	Daylight	8.250	Property Damage	Dry	0	2
6/18/2009	$\begin{gathered} 12: 03 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Rear End	Rain	Daylight	8.250	Property Damage	Wet	0	2
7/16/2009	3:50 PM	Same Direction - Rear End	Clear	Daylight	8.250	Property Damage	Dry	0	2
8/6/2010	4:11 PM	Same Direction - Rear End	Clear	Daylight	8.250	Property Damage	Dry	0	2
7/14/2011	$\begin{gathered} 11: 21 \\ \text { AM } \\ \hline \end{gathered}$	Right Angle	Overcast	Daylight	8.250	Injury	Dry	1	1
9/5/2011	$\begin{gathered} 12: 03 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Daylight	8.270	Injury	Dry	1	4
7/5/2010	$\begin{gathered} \hline 12: 50 \\ \text { PM } \end{gathered}$	Right Angle	Clear	Daylight	8.320	Property Damage	Dry	0	2
9/14/2011	3:05 PM	Right Angle	Clear	Daylight	8.320	Property Damage	Dry	0	2
8/6/2009	1:50 PM	Struck Parked Vehicle	Clear	Daylight	8.360	Property Damage	Dry	0	2
12/7/2010	9:20 AM	Same Direction - Rear End	Clear	Daylight	8.360	Injury	Dry	2	2
3/21/2009	4:17 PM	Right Angle	Clear	Daylight	8.400	Injury	Dry	1	2
7/2/2010	$\begin{gathered} 11: 15 \\ \text { AM } \end{gathered}$	Struck Parked Vehicle	Clear	Daylight	8.420	Property Damage	Dry	0	2
9/28/2009	1:20 PM	Same Direction - Side Swipe	Clear	Daylight	8.450	Property Damage	Dry	0	2
12/3/2011	2:00 AM	Same Direction - Side Swipe	Clear	Daylight	8.460	Property Damage	Dry	0	2

CRASH DATE	CRASH TIME	CRASH TYPE	ENVIRONMENTAL CONDITION	$\begin{gathered} \text { LIGHT } \\ \text { CONDITION } \end{gathered}$	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
7/9/2009	1:40 PM	Same Direction - Rear End	Clear	Daylight	8.500	Property Damage	Dry	0	2
6/26/2011	1:35 PM	Same Direction - Rear End	Clear	Daylight	8.560	Property Damage	Dry	0	2
12/15/2010	4:20 PM	Right Angle	Clear	Dusk	8.650	Property Damage	Dry	0	2
7/16/2010	4:30 PM	Same Direction - Rear End	Clear	Daylight	8.680	Property Damage	Dry	0	2
9/29/2010	$\begin{gathered} 12: 01 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Rear End	Clear	Daylight	8.699	Property Damage	Dry	0	2
9/2/2011	4:10 PM	Struck Parked Vehicle	Clear	Daylight	8.700	Property Damage	Dry	0	2
12/4/2010	9:55 AM	Right Angle	Clear	Daylight	8.810	Property Damage	Dry	0	2
8/7/2011	4:15 PM	Same Direction - Rear End	Clear	Daylight	8.840	Injury	Dry	1	2
4/17/2011	3:30 PM	Same Direction - Side Swipe	Clear	Daylight	8.860	Property Damage	Dry	0	2
7/4/2011	3:15 PM	Right Angle	Clear	Daylight	8.860	Property Damage	Dry	0	2
7/30/2010	5:25 PM	Same Direction - Rear End	Clear	Daylight	8.870	Injury	Dry	1	2
10/23/2010	$\begin{gathered} 10: 02 \\ \text { AM } \\ \hline \end{gathered}$	Other	Clear	Daylight	8.870	Injury	Dry	1	2
12/11/2011	$\begin{gathered} 11: 20 \\ \text { AM } \\ \hline \end{gathered}$	Fixed Object	Clear	Daylight	8.930	Property Damage	Dry	0	1
6/20/2009	4:35 PM	Same Direction - Rear End	Clear	Daylight	8.955	Injury	Dry	1	2
8/27/2010	5:20 PM	Same Direction - Rear End	Clear	Daylight	9.000	Injury	Dry	1	3
6/27/2009	$\begin{gathered} 11: 10 \\ \text { AM } \end{gathered}$	Same Direction - Rear End	Clear	Daylight	9.060	Property Damage	Dry	0	2

CRASH DATE	CRASH TIME	CRASH TYPE	ENVIRONMENTAL CONDITION	$\begin{gathered} \text { LIGHT } \\ \text { CONDITION } \end{gathered}$	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES INVOLVED
6/26/2011	3:30 PM	Same Direction - Rear End	Clear	Daylight	9.060	Property Damage	Dry	0	2
12/18/2011	2:35 PM	Same Direction - Side Swipe	Clear	Daylight	9.060	Property Damage	Dry	0	2
7/23/2009	$\begin{gathered} 12: 30 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Rear End	Rain	Daylight	9.070	Injury	Wet	1	2
7/23/2009	$\begin{gathered} 12: 30 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Rear End	Rain	Daylight	9.070	Injury	Wet	1	3
10/21/2010	7:05 PM	Struck Parked Vehicle	Clear	Dark (Street Lights On/ spot)	9.100	Property Damage	Dry	0	2
8/12/2011	5:14 PM	Same Direction - Rear End	Clear	Daylight	9.110	Property Damage	Dry	0	3
9/1/2009	1:21 PM	Right Angle	Clear	Daylight	9.150	Property Damage	Dry	0	2
7/4/2010	8:50 PM	Same Direction - Rear End	Clear	Daylight	9.160	Injury	Dry	1	2
8/17/2009	1:10 PM	Same Direction - Rear End	Clear	Daylight	9.195	Property Damage	Dry	0	2
8/3/2009	$\begin{gathered} 10: 15 \\ \text { AM } \\ \hline \end{gathered}$	Right Angle	Clear	Daylight	9.200	Property Damage	Dry	0	2
11/20/2010	2:40 PM	Right Angle	Clear	Daylight	9.200	Property Damage	Dry	0	2
8/18/2011	1:43 PM	Same Direction - Rear End	Clear	Daylight	9.200	Property Damage	Dry	0	2
8/21/2011	6:27 PM	Same Direction - Rear End	Clear	Daylight	9.200	Injury	Dry	1	3
8/20/2011	$\begin{gathered} 10: 53 \\ \text { AM } \\ \hline \end{gathered}$	Pedalcyclist	Clear	Daylight	9.200	Injury	Dry	1	1
6/6/2010	3:30 PM	Same Direction - Rear End	Clear	Daylight	9.205	Property Damage	Dry	0	2
7/31/2009	7:20 PM	Same Direction - Rear End	Rain	Dusk	9.210	Property Damage	Wet	0	2

$\begin{aligned} & \text { CRASH } \\ & \text { DATE } \end{aligned}$	$\begin{aligned} & \text { CRASH } \\ & \text { TIME } \end{aligned}$	CRASH TYPE	ENVIRONMENTAL CONDITION	LIGHT CONDITION	MILEPOST	SEVERITY	SURFACE CONDITION	TOTAL INJURED	TOTAL VEHICLES involved
8/20/2009	3:50 PM	Same Direction - Rear End	Clear	Daylight	9.210	Injury	Dry	1	3
8/12/2009	9:22 PM	Same Direction - Rear End	Rain	Dark (Street Lights On/ continuous)	9.240	Injury	Wet	1	2
5/31/2009	1:35 PM	Same Direction - Rear End	Clear	Daylight	9.250	Property Damage	Dry	0	2
4/20/2010	3:35 PM	Same Direction - Rear End	Clear	Daylight	9.260	Property Damage	Dry	0	2
11/22/2010	1:17 PM	Right Angle	Clear	Daylight	9.300	Property Damage	Dry	0	2
6/23/2009	$\begin{gathered} 12: 25 \\ \text { PM } \\ \hline \end{gathered}$	Same Direction - Side Swipe	Clear	Daylight	9.314	Property Damage	Dry	0	2

Appendix B

Panel Legend for Aerial Image of Crash Locations

Image	From Street	To Street	$\begin{gathered} \text { From MP } \\ +/- \\ \hline \end{gathered}$	$\begin{gathered} \text { to MP } \\ +/- \end{gathered}$
LBI 1	McKinley Avenue	Joan Road	0.00	0.26
LBI 2	Jacqueline Avenue	Scott Drive	0.30	0.55
LBI 3	Tebco Terrace	Rosemma Avenue (Riptide Lane)	0.62	0.80
LBI 4	Rosemma Avenue (Riptide Lane)	Osborn Avenue	0.80	1.14
LBI 5	North of Osborn	Jefferries Avenue	1.14	1.45
LBI 6	Stratford Avenue	Glendola Avenue	1.50	1.75
LBI 7	Fairview Avenue	Norwood Avenue	1.80	2.05
LBI 8	Berkeley Avenue	Amber Street	2.10	2.36
LBI 9	Engleside Avenue	5th Street	2.41	2.70
LBI 10	6th Street	11th Street	2.75	3.02
LBI 11	11th Street	17th Street	3.02	3.31
LBI 12	17th Street	23rd Street	3.31	3.60
LBI 13	23rd Street	29th Street	3.60	3.89
LBI 14	29th Street	Maryland Avenue	3.89	4.18
LBI 15	Maryland Avenue	Ryerson Avenue	4.18	4.48
LBI 16	Ryerson Avenue	Colorado Avenue	4.48	4.76
LBI 17	Colorado Avenue	North Carolina Avenue	4.76	5.04
LBI 18	North Carolina Avenue	Lillie Avenue	5.04	5.33
LBI 19	Lillie Avenue	Herbert Avenue	5.33	5.61
LBI 20	Herbert Avenue	Sailboat Drive	5.61	5.89
LBI 21	Sailboat Drive	Massachusetts Avenue	5.89	6.16
LBI 22	Massachusetts Avenue	Mea Lane	6.16	6.42
LBI 23	Mea Lane	Goodrich Avenue	6.42	6.80
LBI 24	Goodrich Avenue	Harmony Avenue	6.80	7.18
LBI 25	Harmony Avenue	50th Street	7.18	7.52
LBI 26	49th Street	40th Street	7.56	7.92
LBI 27	39th Street	30th Street	7.94	8.28
LBI 28	30th Street	22nd Street	8.28	8.65
LBI 29	22nd Street	15th Street	8.65	9.01
LBI 30	15th Street	8th Street	9.01	9.36

Aerial Image of Crash Locations along the Corridor Panels are from South to North

LBI Panel 1

From: McKinley Avenue (MP 0.00)
To: Jacqueline Avenue (MP 0.30)

LBI Panel 2

From: Jacqueline Avenue (MP 0.30)
To: Scott Drive (MP 0.55)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	$\stackrel{\square}{\bullet}$			
Same Direction - Side Swipe	\bigcirc	$\stackrel{\square}{0}$	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	$\stackrel{\square}{0}$	Fixed Object	\bigcirc	\bigcirc
Struck Parked Vehicle		\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 3
From: Tebco Terrace (MP 0.62)
To: Rosemma Avenue (MP 0.80)

LBI Panel 4
From: Rosemma Avenue (MP 0.80)
To: Osborn Avenue (MP 1.14)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	8	\bigcirc			
Same Direction - Side Swipe	8	\bigcirc	Backing	8	\bigcirc
Right Angle or Left Turn/U-Turn	8	9	Fixed Object	R	9
Struck Parked Vehicle	8	\bigcirc	Pedalcyclist	8	\bigcirc

LBI Panel 5

From: Osborn Avenue (MP 1.14)
To: Jefferies Avenue. (MP 1.45)

LBI Panel 6

From: Stratford Avenue (MP 1.50)
To: Glendola Avenue (MP 1.75)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	\bigcirc			
Same Direction - Side Swipe	8	\bigcirc	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object	8	\bigcirc
Struck Parked Vehicle	8	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 7
From: Fairview Avenue (MP 1.80)
To: Norwood Avenue (MP 2.05)

LBI Panel 8

From: Berkeley Avenue (MP 2.10)
To: Amber Street (MP 2.36)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	\bigcirc			
Same Direction - Side Swipe	\bigcirc	\bigcirc	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	θ	Fixed Object	8	\bigcirc
Struck Parked Vehicle	\bigcirc	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 9
From: Engleside Avenue (MP 2.41)
To: 5th Street (MP 2.70)

LBI Panel 10
From: 6th Street (MP 2.75)
To: 11th Street (MP 3.02)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	\bigcirc			
Same Direction - Side Swipe	\bigcirc	\bigcirc	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object	8	\bigcirc
Struck Parked Vehicle	\bigcirc	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 11
From: 11th Street (MP 3.02)
To: 17th Street (MP 3.31)

LBI Panel 12
From: 17th Street (MP 3.31)
To: 23rd Street (MP 3.60)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	\bigcirc			
Same Direction - Side Swipe	8	\bigcirc	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object	8	\bigcirc
Struck Parked Vehicle	8	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 13
From: 23rd Street (MP 3.60)
To: 29th Street (MP 3.89)

LBI Panel 14

From: 29th Street (MP 3.89)
To: Maryland Ave. (MP 4.18)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	\bigcirc			
Same Direction - Side Swipe	\bigcirc	\bigcirc	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object	8	\bigcirc
Struck Parked Vehicle	\bigcirc	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 15
From: Maryland Avenue (MP 4.18)
To: Ryerson Avenue (MP 4.48)

LBI Panel 16

From: Ryerson Avenue (MP 4.48)
To: Colorado Avenue (MP 4.76)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	\bigcirc			
Same Direction - Side Swipe	8	\bigcirc	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object	8	\bigcirc
Struck Parked Vehicle	8	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 17
From: Colorado Avenue (MP 4.76)
To: North Carolina Avenue (MP 5.04)

LBI Panel 18

From: North Carolina Avenue (MP 5.04)
To: Lillie Avenue (MP 5.33)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	8	\bigcirc			
Same Direction - Side Swipe	8	\bigcirc	Backing	8	\bigcirc
Right Angle or Left Turn/U-Turn	8	9	Fixed Object	8	\bigcirc
Struck Parked Vehicle	\bigcirc	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 19

From: Lillie Avenue (MP 5.33)
To: Herbert Avenue (MP 5.61)

LBI Panel 20

From: Herbert Avenue (MP 5.61)
To: Sailboat Drive (MP 5.89)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	$\stackrel{\square}{ }$			
Same Direction - Side Swipe	\bigcirc	\bigcirc	Backing	\bigcirc	$\stackrel{\square}{ }$
Right Angle or Left Turn/U-Turn	8	$\stackrel{\square}{0}$	Fixed Object	\bigcirc	\bigcirc
Struck Parked Vehicle	\bigcirc	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 21

From: Sailboat Drive (MP 5.89)
To: Massachusetts Avenue (MP 6.16)

LBI Panel 22

From: Massachusetts Avenue (MP 6.16)
To: Mea Lane (MP 6.42)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	8	\bigcirc			
Same Direction - Side Swipe	8	\bigcirc	Backing	8	9
Right Angle or Left Turn/U-Turn	8	9	Fixed Object		9
Struck Parked Vehicle	\bigcirc	\bigcirc	Pedalcyclist	γ	\bigcirc

LBI Panel 23

From: Mea Lane (MP 6.42)
To: Goodrich Avenue (MP 6.80)

LBI Panel 24

From: Goodrich Avenue (MP 6.80)
To: Harmony Avenue (MP 7.18)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	\bigcirc	$\stackrel{\rightharpoonup}{ }$			
Same Direction - Side Swipe	8	\bigcirc	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object	8	\bigcirc
Struck Parked Vehicle		\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 25
From: Harmony Avenue (MP 7.18)
To: 50th Street (MP 7.52)

LBI Panel 26

From: 49th Street (MP 7.56)
To: 40th Street (MP 7.92)

LEGEND					
Type of Crash	No Injury	Injury	Type of Crash	No Injury	Injury
Same Direction - Rear End	\bigcirc	\bigcirc			
Same Direction - Side Swipe	8	1	Backing	\bigcirc	\bigcirc
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object	\bigcirc	\bigcirc
Struck Parked Vehicle	\bigcirc	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

LBI Panel 27
From: 39th Street (MP 7.94)
To: 30th Street (MP 8.28)

LBI Panel 28
From: 30th Street (MP 8.28)
To: 22nd Street (MP 8.65)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	8	\bigcirc			
Same Direction - Side Swipe	8	\bigcirc	Backing	8	9
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object		9
Struck Parked Vehicle	8	\bigcirc	Pedalcyclist	γ	\bigcirc

LBI Panel 29

From: 22nd Street (MP 8.65)
To: 15th Street (MP 9.01)

LBI Panel 30
From: 15th Street (MP 9.01)
To: 8th Street (MP 9.36)

LEGEND					
Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury	Type of Crash	$\begin{gathered} \text { No } \\ \text { Injury } \end{gathered}$	Injury
Same Direction - Rear End	8	\bigcirc			
Same Direction - Side Swipe	8	\bigcirc	Backing	8	\bigcirc
Right Angle or Left Turn/U-Turn	8	\bigcirc	Fixed Object	8	\bigcirc
Struck Parked Vehicle	\bigcirc	\bigcirc	Pedalcyclist	\bigcirc	\bigcirc

Appendix C

Straight Line Diagram

Page |C-3

Appendix D

Alternative Crosswalks

Page |D-4

Crash Diagram - 48th Street

RIGHT ANGLE(1) 8/8/2010-11:50 am - Dry, DaylightRIGHT ANGLE8/11/2010-12:30 pm - Dry, DaylightRIGHT ANGLE (3) 8/30/2010-5:30 pm - Dry, DaylightRIGHT ANGLE
(4) 5/14/2011-6:05 pm - Dry, DaylightSAME DIRECTION REAR END \bigcirc
(5) $8 / 25 / 2010-12: 15 \mathrm{am}$ - Dry, Daylight6/220211-11:24 am - Dry, DaylightSAME DIRECTION REAR END9/3/2011 - 9:02 pm - Dry, Dark (Street Lights On/Continuous)

LEGEND

Bold $=$ InjuryNumber of crashes if >1

* Confirmed by NJTR-1 Police narrative

Typical Roadway Sections

CR 607 - TYPICAL ROADWAY SECTIONS

A.

Four Lane Section MP 2.84 to MP 9.36
B.

Two Lane Section With Angled Parking MP 2.25 to MP 2.84
C.

Two Lane with Shoulders
MP 0.0 to MP 2.25

Appendix E

List of Recommendations

General Corridorwide Recommendations

(1) Consider the installation of (mountable or painted) bulb-outs at intersections.
(2) Speed reduction may be encouraged by narrowing lanes from 12 to 11 feet.
(3) Consider the delineation of the edge of the outer travel lane with shoulder markings.
(6) Plan for full ADA compliance by scheduling upgrades of existing curbs and sidewalks.
(10) Review the corridor to identify crosswalks with inconsistent marking styles and promote uniformity with crosswalks.

Signage

(7) Professional engineering staff should review the use and application of signage to ensure standardized application throughout the corridor.
(8) Professional engineering staff should conduct a thorough evaluation of existing and required signage to reduce the amount of signage along the corridor and decrease sign clutter.

Pedestrians - Signalized Intersections

Professional staff should conduct a study to determine the optimal locations and intervals of signalized intersections. It is anticipated this course of action would be a long-term implementation, and would result in upgraded signal equipment when implemented.
(9) Consider installation of countdown pedestrian heads at signalized intersections.

Pedestrians - Unsignalized Intersections

(11) Consider providing an unsignalized crossing location periodically between signals, at consistent intervals (every block, every other block, every third block, etc.).
(12) Review feasibility of pedestrian refuge islands (striped or mountable; see \#15 through17) that pedestrians can cross to and safely wait for a gap in opposing traffic.
(13) Any pedestrian median refuge islands should be installed such that they are mountable for emergency vehicle access and to allow for emergency evacuation activities.
(14) Any pedestrian median refuge islands should be visually differentiated from the roadway pavement in order to raise awareness of pedestrian crossing location and increase perception of safety by pedestrians. Consider vegetation, traffic stanchions, or other mountable objects.
(15) Consider installation of pedestrian refuge islands at each intersection, alternating with location of left-turn lane from Long Beach Boulevard (see Crosswalks: Alternative 1).
(16) Consider installation of a refuge island on one side of the intersection with left-turn lane on the other side of intersection (see Crosswalks: Alternative 2).
(17) Consider installation of a midblock crosswalk with a refuge island and head-to-head left-turn lanes at the intersections (see Crosswalks: Alternative 3).

Pedestrians - General

(18) Additional active lighted crosswalk signage should be considered at marked crosswalks where additional visibility is needed.
(19) Consider the use of treatments to enhance visibility of crosswalks, potentially including stamped concrete, bulb-outs, bollards, stanchions, and refuges where additional visibility is needed.
(20) Investigate the installation of active warning beacons, especially rectangular rapid flashing beacons, at unsignalized marked crossing locations where additional visibility is needed.
(21) Where additional visibility is needed, consider installing supplemental overhead pedestrian crossing signage.
(22) Pedestrians may be encouraged to use sidewalks by providing streetscaping along the roadway, making them more comfortable. This would also increase driver awareness of potential pedestrian activity.
(23) The addition of pedestrian way-finding signs to clearly direct pedestrians may increase safer pedestrian behavior.

Parking

(24) Consider the installation of additional roadway marking delineating areas of parking prohibition in the vicinity of crosswalks.
(25) Ensure that proper no parking zone signage is clearly marked adjacent to crosswalks and approaching intersections.
(26) Increase visible enforcement of parking restrictions in the vicinity of the crosswalk.

Traffic Signals

(28) Professional staff should conduct a study to determine the optimal locations and intervals of signalized intersections.
(29) Increased visibility of signal heads would be enhanced by installing retroreflective back plates.
(30) A standard signal configuration should be developed and implemented as signal equipment is upgraded.
(31) Consider the installation of 12 -inch lenses for vehicle signal heads as per MUTCD.

Lighting

(32) Have professional staff conduct a formal engineering review of existing lighting conditions to evaluate where both vehicle and pedestrian level lighting can be enhanced. Additional consideration should be given at designated unsignalized pedestrian crossing locations.

Bicycles

(33) Consider providing quality bicycle facilities on parallel roadways to Long Beach Boulevard to encourage bicycle use of these facilities.
(34) Consider the installation of additional bicycle facilities along Long Beach Boulevard.

Education

(4) Consider using Variable Message Signs (VMS) for educational purposes during peak season.
(5) Continue educational programs for tourists emphasizing the importance of crossing at crosswalks. Enhance existing programs by producing brochures, advertising on retail bags and in business windows, and creating a website and social media messages. Rental real estate agents could also include this information when welcoming new tourists.

Appendix F

Bus Route

Page |F- 2

